
AD-RiS 429 MRXIMUM BOUNDED ENTROPY: RPPLICRTION TO TOMOORAPIC 1/1
RECONSTRUCTION(U) ARMY BRLLISTIC RESERCH LAB ABERDEEN
PROVING GROUND HD B R FRIEDEN ET AL. RPR 85

UNCLASSIFIED BRL-TR-265B F/O 14/5 NL

E|hEEnEEEEEEEEEEEEEEEEEEE1

I|||||g



1. 11,8I0

MI M(RocoPY RESOLUTION TEST CHART

TIONAL BUREAU OF STANDARDS- 19631

,.o.
** i 10 III.

'R'BIB1.

L2 :4 Bi-

MIrOOP-EOUTO.ES HR



AD-A160 429 ___D__

AD

US ARMY
MATERIEL

COMMANo TECHNICAL REPORT BRL-TR-2650

MAXIMUM BOUNDED ENTROPY: APPLICATION
TO TOMOGRAPHIC RECONSTRUCTION

B. Roy Frieden
Csaba K. Zoltani

April 1985 DT..! DTIC
AftELECTE
S''.OCTI 1 95

• E
S L.J APPROVED FOR PUDUC RELEASE; DISTRIBUTION UNUMITED.

US ARMY BALLISTIC RESEARCH LABORATORYI=* ABERDEEN PROVING GROUND, ..MAI4YLAND

85 10 11 025

ii ~. ... --... . -. ...-.-.-...... .. .. . .. . .. . ...

• = -:-. -., = ', ,",,-' i :.:. .,-:::: ,:"::::::::::::::::::::::::::::.:::::::::::::::::::::::



Destroy this report when it is no longer needed.
Do not return it to the originator.

Additional copies of this report may be obtained
from the National Technical Information Service,
U. S. Department of Commerce, Springfield, Virginia
22161.

The findings in this report are not to be construed as an official
Department 6f the-my position, unless so designated by other
authorized documents.

The use of trade names or manufacturers' names in this report

does not constitute indorsement of any commercial product. 1 1

V.

**.* .. - .. e . -'.*.*.***~..*** *** . ..

.. ..~.**.*..*................



UNCLASSIFIED

S EURIT CLASSIFICATION OF THIS PAGE 'Whaen Date Enl.red)

READ INSTRUCTIONSREPORT DOCUMENTATION PAGE i BEFORE COMPLETING FORM

REPORT NUMBER 12. GOVT ACCESSION NO.1 RECIPiENT'S CATALOG NUMBER

TECHNICAL REPORT BRL-TR-2650

4. TITLE (and Subtitle) . tYPE OF REPORT & PERIOD COVERED
Maximum Bounded Entropy: Application to Final

Tomographic Reconstruction

6 PERFORMING ORG. REPORT NC:MBER

7. AUTHOR(@) 8. CONTRACT OR GRANT NUMBER(a)
B. Roy Frieden*
Csaba K. Zoltani

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGPAM ELEMENT. PROJECT. TASK

US Army Ballistic Research Laboratory AREA a *ORK uNIT NUMBERS

A XBR-I BD 1L161102AH43
Aberdeen Proving Ground, MD 21005-5066

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

US Army Ballistic Research Laboratory April 85

ATTN: AMXBR-OD-ST 13 NUMBER OF PAGtS', 38
Aberdeen Proving Ground, MD. 21005

14. MONITORING AGENCY NAME & ACDRESS(If different from Controlling Office) '5 SECukITY CLASS. i t him report)
UNCLASSIFIED

I S. DECLA55!rICATIN DOWNGRADINGk',CH EOu LE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution is unlimited.

, 17. DISTRIBUTION STATEMENT (of the abetrect entered In Block 20, If different from Report)

18. SUPPLEMENTARY NOTES

*University of Arizona

19. KE': WORDS (Continue on revere. side : leceeay ald Identify by block number)

Entropy Tomography Computerized Simulation.

Alogrithms Image Restoration

gk!
20. A UTRACT f'C otfuiue e powwow eft If neweary awd fdeni fy by block .umber)

We have investigated a new image restoring algorithm which utilizes maximum
bounded entropy (MBE). It incorporates prior knowledge of both a lower and
upper bound of the signal in the unknown object. Its outputs are maximum
pr)bable estimates of the object, under the following conditions: (a) the

- photons forming the image behave as classical particles; (b) 'the object is
assumed to be biased toward a flat, gray scene in the absence of image data;
(c) the object is modeled as consisting of high-gradient foreground details

LO 12M 711473 OtTION OF 10V SS I OBSOLEL UNCLASSIFIED

.. '.e '

* ' *.* 7'



L ! SECURITY CL.ASSIFICATION C, THIS PAGE(lb.1 Date Ente)

20. Abstract (Cont'd):

riding on top of a smoothly varying background that must be estimated in a
separate step; and (d) the image noise is Poisson. The proposed MBE estimator
lgorithm maximizes the sum of entropies of occupied and unoccupied photon

sites. The result is an estimate of the object that is restricted to values
inside the prescribed bounds. The algorithm was applied to the reconstruction
of rod cross sections from tomographic viewing. In such a problem the object
consists only of upper-and lower-bound values. We found that in the example
only four projections were needed to provide a good reconstruction, and that
20 projections allowed the partial resolution of a single pixel-wide crack in
one of the rods.

i

SECU~r'TY C'ASSI lC A-C 4 :r '- 5 3'Wh7en Data Fn...cj'

: V! . S.T .'.D



L , . -, -. ,, ,T . .> ,j i . . , .. . . .. . . . . .. -r

TABLE OF CONTENTS

FIGURE CAPTIONS ...................... *......... ...... ...... ....

1.I INTRODUCTION .... .. o... .. .. ..... ...... ....._ .... o ..... o......o.... e7

II. IMAGE MODELING
A. Object Model ... o.... ..... ......................9

B. A Priori Probability of an Object.....................10
Co Image Model ..... ...... o ....... ...... ...-o oo.....o...... 11

III. THE ALGORITHM

A. Net Likelihood Function.................. . .o. . ..... 12

B. Restoring Principle........... ... ... ..... ... e... 12
C. Net Restoring Algorithm.............................. 13

IV. APPLICATIONS TO COMPUTER TOMOGRAPHY............................14

V. CONCLUSIONS ..... ....... ..... ..... ........ ...o.... o........o...20

|ACKNOWLEDGEMENTS ...... ... ...... %o........ ............. 21

REFERENCES ..o.. ....... o o~_.....o e -o..... . . .. . . .. . . . .... .... 22

APPENDIX A. USE OF BOSE EINSTEIN STATISTICS ......... .......... 25

DISTRIBUTION LISToo .. ~~~. oo.o.o. o..o 0 29

Accession For

NTIS GPA&I

DTIC TAB

-. ~Ju: t if, :tl

By __ [

-" Di ft rl b t i on/ O" ".
1,A iic .1i 1 ty Codes
Av !L.. and/or

Dist Special

3
"%°

. . . . .-. . . . . . .-. . . .. . . . .. . .. .. - . .. . . . . . .- - - . . . . - . .. ...

i d,,III.........1..II............... ...... '" "



FIGURE CAPTIONS

Page

Figure 1(a). Point Spread Function (Logarithm of Intensities) ....... i
(b). Object (Logarithm of Intensities).
(c). Poisson Image, S/N = 10.
(d). Image Filtered Reconstruction Using p = 200.
(e). Estimated Background B.

.(f) MBE Reconstruction Using p - 200.

Figure 2(a). Point Spread Function (Logarithm of Intensities) ....... 17
(b). Object (Logarithm of Intensities).
(c). Poisson Image, SNR = 10.
(d). Image Filtered into Gaussian Form, a = 2.
(e). MBE Reconstruction Using p = 200.
(f). ME Reconstruction Using p = 200.
(g). ME Reconstruction Using p = 300.
(h). ME Reconstructing Using p = 400.

Figure 3(a). Point Spread Function (Logarithm of Intensities) ...... .. 19
(b). Object (Logarithm of Intensities).
c). Poisson Image, SNR = 10.

(d). Image Filtered into Gaussian Form, a = 1.5.
(e). ME Reconstruction Using p = 200.
(f). MBE Reconstruction Using p = 400.
(g). Image (c) Filtered into Gaussian Form, a = 2.
(h). MBE Reconstruction Using p = 400.

5



I. INTRODUCTION

It is widely appreciated that the faithfulness in estimation of an
unknown object depends strongly upon what is known a priori about the
object. In particular, the knowledge that the unknown object must be
positive, called "positivity," has been well exploited in restoration
schemes.'-10 Calculational effort with reconstruction techniques is also

1A.C. Schell, "Enhancing the Angular Resolution of Incoherent Sources." Radio
Electronic, Eng., Vol. 29, pp. 21-26, 1965.

2P.A. Jansson, R.H. Hunt, and E.K. Plyler, "Response Function for Spectral
Resolution Enhancement," J. Opt. Soc. Am., Vol. 58, pp. 1665-1666, 1968.

3y. Biraud, "A New Approach for Increasing the Resolving Power of Data
Processing," Astron. Astrophys., Vol. 1, pp. 124-127, 1969.

4 B.R. Frieden, "Restoring with Maximum Likelihood and Maximum Entropy," J.
Opt. Soc. Am., Vol. 62, pp. 511-517, 1972.

5 W.H. Richardson, "Bayesian Based Iterative Method of Image Restoration," J.
Opt. Soc. Am., Vol. 62, pp. 55-59, 1972.

6 L.B. Lucy, "An Iterative Technique for the Rectification of Observed

Distributions," Astron. J., Vol. 79, pp. 745-754, 1974.

SS.j. Wernecke and L.R. D'Addario, "Maximum Entropy Image Reconstruction,"
IEEE Trans. Computers, Vol. C-26, pp. 351-364, 1977.

8 S.F. Gull and G.J. Daniell, "Image Reconstruction from Incomplete and Noisy

Data," Nature, Vol. 272, pp. 686-690, 1978.

9 B.R. Frieden, "Image Restoration Using a Norm of Maximum Information," Proc.
SPIE, Vol. 207, pp. 14-25, 1979.

IOA.R. Davies, T. Cochrane, and O.M. Al-Faour, "The Numerical Inversion of
Truncated Autocorrelation Functions," Optica Acta, Vol. 27, pp. 107-118,
1980.
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considerably reduced when non-physical states are disallowed. 1 1- 15  Positivity
permits one to produce sharper edge gradients where the edge meets the known
(or zero) background level 16 whereby the estimated gradient profile contains
spatial frequencies that may appreciably exceed the cutoff frequency in the
data.

3- 4

However, the high intensities near the top of the edge profile are not so
enhanced. There, the data are far from the "forbidden" region of negative
values; enforcing positivity upon already positive numbers does nothing to
them. The question is, then, how can the gradient near the top of the edge
profile be enhanced by enforcing some other prior knowledge?

Because a lower bound of zero works at low intensity values, it might be
expected that knowledge of a finite upper bound b can produce the desired
effect at the higher intensity values. In fact, this can be shown to be true,

merely by reapplying the argument in Reference 16 to the upper-bound
situation. The enhancement can be expected to be most effective if one has a
least upper bound, and in particular, cases where the object attains it quite
often across the scene. Ideally, it should attain the bound roughly as often
as it attains zero or background values.

Objects of this kind arise diversely. In image restoration, the object
might be a handwritten or printed page, where the white paper provides the
upper bound and the print provides the lower bound. In spectroscopy, the
object j1n be an absorption spectrum. which must lie between 0 and 100%
levels. In photography, advantage b., be taken of the known fog and

18saturation density levels. Or, in reconstruction tomography, the object

11 R. Gordon, R. Bender, and G.T. Herman, "Algebraic Reconstruction Techniques

(ART) for Three Dimensional Electron Microscopy and X-Ray Photography," J.
Theor. Biol., Vol. 29, pp. 471-481, 1970.

12 G. Minerbo, "MENT, A Maximum Entropy Algorithm for Reconstructing a Source

from Projection Data," Comp. Graphics Image Processing, Vol. 10, pp. 48-68,

1979.

1 3A. Lent, "A Convergent Algorithm for Maximum Entropy Image Restoration with

Medical X-Ray Applications," in SPSE Conference Proceedings, R. Shaw, ed.,

(SPSE, Washington, D.C., 1976), pp. 249-257.

14 G.T. Herman, A. Lent, and S.W. Roland, "ART: Mathematics and
Applications," J. Theor. Biol., Vol. 42, pp. 1-32, 1973.

5 C.F. Barton, "Computerized Axial Tomography for Neutron Radiography of

Nuclear Fuel," Trans. Amer. Nucl. Soc., Vol. 27, pp. 212-213, 1977.

16 B.R. Frieden, "Estimation-A New Role for Maximum Entropy," in SPSE

Conference Proceedings, R. Shaw, ed. (SPSE, Washington, D.C., 1976), pp.
261-265.

,* 1 7P•A. Jansson, R.H. Hunt, and E.K. Plyler, "Resolution Enhancement of

Spectra," J. Opt. Soc. Am., Vol. 60, pp. 596-599, 1970.

"8 B.R. Frieden, "Statistical Estimates of Bounded Optical Scenes by the Method
of Prior Probabilities," IEYE Trans. Tnform. Theory, Vol. IT-19, pp. 118-

119, 1973.
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might be machine parts or rods of known absorption coefficient immersed in a
medium whose absorption coefficient is also known. If the rods are denser

than the medium, they provide the upper bound in absorption, the medium
providing the lower. We shall simulate this case in particular examples

below.

In applications of this type one may have to choose the bounds depending
on the purpose for forming the tomographic image. If the purpose is to
visualize imperfections in the rods, it is important that the imperfections as
well as the rods have absorption values that lie between the prescribed bounds
(O,b). Otherwise the imperfections will not be augmented by enforcing the
bounds. The simplest of imperfections--cracks--satisfy the bounds for the
rods since where they occur a level b has merely been replaced by a 0. This
case in particular will be considered below in the simulations. If, on the
other hand, the imperfections are in the form of impurities with higher
absorption embedded in the rods, e.g., an admixture of another substance that
was inadvertently added during manufacture, then level b should be replaced by
a proper b' exceeding b.

We follow the approach of Reference 4 and model the object as an array of
photon counts mn, n=l, ..., M=m, where mn denotes the number of photons

absorbed (in the tomografhic case of interest) at poqition xn in the object.
Let - o represent the energy increment represented by each count. Then an
object o relates to its counts through

o = mAo. (la)

We seek the most probable object o consistent with two known bounds

O 1r n b, n = 1, "'',M. (ib)

II. IMAGE MODELING

A. Object Model

In this section we discuss a model of the object. Let the photons in
question be x rays, as for example in tomography. These have low quantum

degeneracy 19 and hence behave statistically like discrete or Boltzmann
particles. This is one aspect of the model. Another aspect is the mean

object <o>. By the law of large numbers,2 0 as the number of photons
approaches infinity o will approach <o>. Hence the numbers <o> act as
"biases" for o. Since biasing is a profound effect, it must be closely

"9 R. Kikuchi and B.H. Soffer, "Maximum Entropy Image Restoration. I. The

Entropy Expression," J. Opt. Soc. Am., Vol. 67, pp. 1656-1665, 1977.

20B.R. Frieden, Probability, Statistical Optics and Data Testing,

Springer-Verlag, New York, 1983.

9
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consfderod. If a form is assumed for <o>, then o can only fluctuate
probabilistically about it. How can we model <o>?

An important aspect of the estimate o will be its reliability. Again,

using the example of rods, if o shows a crack or pit, can it be trusted? The
detail called "a crack" consists of a strong local departure from grayness
that is, it has an abrupt decrease from b to 0 and corresponding large
gradient. Hence, if we knew that o only shows small departures from grayness,
we could trust the crack detail. On the other hand, we found that numbers <o>
act as biases for o. It follows then that if numbers <o> were flat or
constant

n b constant, n = 1, *.., M, (2)
n 2

and if we knew this to be true, then reliability could be so built into the

estimated o.

The requirement (2) can be nearly true if the object consists of half
background (with but a few rods), but it will not be rigorously true unless
the object is only background (a most uninteresting case). However, the
approximation has been used successfully to process astronomical pictures.2 1

Similarly, if the object field is packed with rods, requirement (2) will
be far from satisfied. In this case ad assumption of (2) will produce errors
in the estimate; however, these will tend to be errors of "omission" only.

*That is, certain details will be missed, but no artifacts will tend to be
created. Again, the reconstruction of a crack will be viewed as probably
truthful. However, some cracks might be missed as the price paid. The false

alarm rate will be low, but perhaps so will be the detection rate. Empirical
tests may establish the rates in particular applications. (Note: empirically
the theoretical possibility of a low detection rate was not borne out. See

". the Applications section below.) We shall adapt condition (2) as the second

aspect of the object model.

B. A Priori Probability of an Object

Given the particle-like behavior of the photons, the knowledge of bounds
(ib) and the assumption of a gray mean object (2), we are ready to form Pl(o),

the a priori probability of a photon-count object o. This will be the
probability that m indistinguishable particles are distributed in any order

within M cells, where each cell can hold anywhere from 0 to b/Ao particles.

* This obeys the binomial statistic

p1 (o) = (b/Ao)! m b/Ao-m
P 0)=Ip- n q n1 n=1 m !(b/Ao - m Pn nn n0 <0 >

n nn Ao n b n"n

*~ 21 B.R. Frieden and D.C. Wells, "Restoring with Maximum Entropy. III. Poisson

Sources and Backgrounds," ,. Opt Soc. Am., Vol. 68, pp. 93-103, 1978.

10
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In effect, the x rays are being treated like electrons, since this is also the
likelihood expression for Fermi-Dirac particles. [Note: A more rigorous
derivation of (3) from the standpoint of photon (not particle) statistics is
given in Appendix A.] In particular for the mean object (2), this becomes

P (o) = ( 1/2)Mb/Ao (b/Ao)!

n=1 m n(b/Ao - m

(4)

const. x 1
n I (on/AO)!(b/Ao - on/Ao)!

the sought expression.

C. Image Model

The rest of the theory in this paper follows that of a previous
paper.2 1 The theory makes the following assumptions about the image data
formed from the unknown object o:

(1) The image iA, ..., i,=i suffers from noise n 1 , ... , n,=n and rides atop a
known background profile B1, ..., E B such that

i = os(X - Xn) + B + n. (5)
m n=1 n n m

The quantity s is the point spread function of the imagery. In computer
tomography, it is the rayed function resembling the British Union Jack, with
one ray for each projection.

Thus, there are now two sets of unknowns, o and n. Background B is
assumed known by the use of some prefiltering operation upon the image, such
as median windowing it. 2 2- 2 4  (2) The noise n is Poisson. This is indeed the
case when using modern imaging arrays in astronomy2 1 and in computertomography.2 5

2 2 B.R. Frieden, "New Restoring Algorithm for the Preferential Enhancement of

Edge Gradients," J. Opt. Soc. Am., Vol. 66, pp. 280-283, 1976.

2 3N.C. Gallagher and G.L. Wise, "Passband and Stopband Properties of

Median Filters," Proceedings of the 1980 Conference on Information Sciences
and Systems, Princeton University, New Jersey, 1980, pp. 303-307.

2 4 B.R. Frieden, "Some Statistical Properties of the Median Window," Proc.

SPIE, Vol. 373, pp. 219-224, 1981.

25H.H. Barrett and W. Swindell, Radiological Imaging, Academic Press,

New York, 1981.
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III. THE ALGORITHM

A. Net Likelihood Function

Taking a conventional probabilistic approach, we seek unknowns o and n

that are jointly maximum probable,

P(o,n) = maximum, (6)

subject to the data. From elementary considerations

P(o,n) = PI(O)P2 (nJo). (7)

We already know Pl(o); see Equation 4.

The conditional probability P2 (ilo) defines the fluctuations in i given
one object o. The noise was assumed to be Poisson on the image with the image
given as photon counts. If each count consists of an energy increment i,
then the image intensity i corresponds to i/Ai counts. Then, assuming
independent image values, we have

i /Al -a

P2 (ilo) = , m e no) (8)

m=I (i /Ai)!
m

where a is the noiseless signal image count. By Equation (5),

am Ai = Ai-1 ( o s(x - x ) + B ). (9)

The final identity in (8) follows because with o fixed, by Equation (5)

corresponding values of im and n have the same histogram. The net likelihood

function is then, by identity (7 , the product of Equations (4) and (8).

B. Restoring Principle

The principle of restoration is to maximize P(o,n) through choice of o
and n subject to the image data idata obeying (5). We shall also assume that
the total energy E in the object is known, e.g., by conservation of energy
from the image data. It is mathematically convenient to maximize In P(o,n),
instead of P(o,n) which gives the same solution. Also, we add the data and
energy constraints to the objective function via Lagrange
multipliers X and P . Accordingly, by Equations 6 and 7 we have to maximize
the function

In P (o) + In P(nlo) - J X m(i - i d ) - o - E) (10)n, m= 1 mm m n-

through choice of n ,o and the Lagrange multipliers. Then by Equations (4)
and (8) the objective function is

12
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-nE (O /Ao) ln(on/Ao) - Z (b/Ao - on/Ao) ln(b/Ao - O/Ao)
n nn n n

(11)

+ n P(no) - E X (i - idata P(E o - E) = maximum
m m m - n

The first sum is the Shannon entropy of the object, while the second is the
Shannon entropy of the unfilled photon sites within each pixel. In other
words, we have filled entropy plus unfilled entropy. This appears to be the
natural way to accommodate an upper bound into a maximum entropy approach.
(See also Reference 18.)

C. Net Restoring Algorithm

The solution to (11) is found21 by substr.tuting in the expression (11)
Equation (8) for P(njo) and Equation (5) for im; and by the usual rules of
calculus, equating to 0 in turn the partial derivatives of the objective
function 8/3o n (n fixed) and a/3n (o fixed). Also, two approximations are
made: a large enough number of p~otons are assumed present so that the
Poisson law (8) may be approximately replaced by a normal law whose variance
equals the mean; and the signal image a is assumed to be smooth and slowly
varying. With these approximations the solution is an o obeying

data = [ e -1-A /P
i E s(x -x )+ B ] inm= ,...,M (12a)
m n=l n m n in

E 0 ~ n (12b)

n=1

~b o =n = 1, ... , M (12c)
1 + exp r + E A s(x - x

in in i n

r vAo, A m X Ao, p _ Ao/Ai. (12d)

Thus, o represented through (12c) in terms of M + I free parameters r, A, must
obey the M + I data Equations 12a,b. This is our maximum bounded entropy
(MBE) restoring algorithm. We can see from the form of Equation 12c that the
estimated on cannot have values outside the interval (O,b). The prescribed
quantity p, defined at (12d), is called the "sharpness parameter." A higher
value of p increases the resolution of the output o. Typically a value p = 50
causes a modest increase in resolution, while p - 200 causes a high

*" increase. This behavior is consistent with its definition in (12d): If one
inputs a high p , he is assuming that the object intrinsically consists of
jumps Ao in intensity much exceeding those in the given image. This causes a
"jumpier" and hence higher-resolved output. Other properties of p are
discussed in Reference 21.

As mentioned before, B is the estimated background intensity function.
Background is defined as a slowly varying component of the image data which
intrinsically lacks resolution and hence is incapable of being restored
further. The function B may be estimated by purposely blurring the input
image, either by convolution with (say) a pillbox function2 1 or by the use of

13



a median window. The latter approach is recommended when the object details

of interest have a known largest support. In this case, the use of a
circular, filled 'ndow of diameter equal to twice (or more) this support
value should be used. The output of this operation is "blind" to these object

details, and hence only "sees" the background. Although this approach is more
time-consuming than the convolution approach mentioned above, it gives a more
accurate estimate of the background.

IV. APPLICATIONS TO COMPUTER TOMOGRAPHY

The preceding algorithm has been developed for any imaging situation
where (a) the photons behave like particles, (b) the object is bounded by
intensity levels 0 and b where b is a least upper bound to intensity, (c) the
object consists of a slowly varying background function plus a foreground
function whose details it is desired to restore, (d) the image is formed
convolutionally from the object via a known point spread function, and (e) the
image suffers from Poisson noise.

There are many cases where these conditions are satisfied in particular
the case of computer tomographic imaging. Suppose that the "back-projected"

image2 5 is the given data idata. This is known to connect with the
* absorptance object o via convolution with a Union Jack point spread function,

for example such as in Figure la. Ea.. drm of the pattern is formed by a
projection in that direction. Hence in this example we are working with four
projections.

The objects of interest are rods immersed in a medium. The rod cross
sections comprise our foreground details. The absorptances of the rods are
known to be at level b, i.e., all are at the upper bound; clearly, this is an
ideal application of the approach. The absorptance of the medium is also

" known, but for consistency in the approach we estimate it (below). A typical
* object of this type is shown in Figure Ib, where the object rods are shown

*i within a large cylinder. Everything beyond the cylinder is at 0 level.
Intensity levels have been logarithmically stretched so as to enable the
background to be seen: it is at 5% of the foreground. Hence the object has

- high contrast.

Notice that the foreground rod cross sections consist of three shapes
* approximating circles, the largest on top, smallest to the lower left. Each

pixel is one detector-width wide, i.e., contains only one ray from a given
projection. Hence, the back-projected image of this object will suffer severe
spillover of energy from the broadest rod into the other two, and vice
versa. In other words, there will be severe blur present. This was to

provide an "acid-test" of the approach.

The spread function 1(a) was convolved in the computer with 1(b) to
produce the back-projected image. This was made a Poisson noise process with
a signal-to-noise ratio (S/N) of 10:1 at the brightest pixel in the image,

* Figure Ic. The image is quite noisy, since S/N falls off as the square root
of intensity and hence is much less than 10:1 at most points in the scene.

" The principal blur is visually along the four projection directions, as would
be expected. This image also suffers from numerous artifact "sources" due to
the chance crossing of rays from different projections.

14
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To speed up the MBE algorithm (12a-d) we programmed it assuming a
Gaussian point spread function s to be present. A Gaussian spread function is
separable in the x and y directions. This permits the algorithm to be aylied
one dimensionally, first to the rows, then to the columns, of the image.

But the actual point spread function is not Gaussian, as is seen in Figure
la. Hence, we had to filter the Poisson image into a Gaussian form,
essentially dividing out the Union Jack and multiplying by the Gaussian. This
output image is called the "prefiltered image." Using a standard deviation =

2 pixels in the Gaussian spread function, we obtained Figure id. Notice that
the rayed appearance of the Poisson image l(c) has been somewhat reduced.

This is due to the Gaussian falloff of the new point spread function.
However, some artifacts linger on. This image comprises i a t a , the input to
the MBE algorithm.

Since the image has been filtered, the background region has been changed
from its value in the object. Hence, it has to be estimated. To do this, we

took advantage of knowing that the rods are rather packed near the center, so
that beyond a radius of about 16 pixels only background occurs (out to the
cylinder walls). Hence, an average was taken over this region in l(d) to
infer the new background level. Background function B was then made to be

this constant value out to the cylinder walls, and thereafter the image I(d)
itself; the latter because, beyond the ."17- there is known to be no
foreground object. This background imdge is shown in Figure le. Numerous

* artifacts in the form of "blobs" can be seen outside the walls. These are due
to imperfect prefiltering of the Union Jack into the Gaussian. However, they
are in actuality much weaker than seen: we gray-scale stretched so as to

render them visible. Also, since these lie outside the region of interest
(the foreground object details), they do not much interfere with the MBE

outputs.

-Knowing idata and B, we can now use the MBE routine. The use of a
*sharpness parameter 200 resulted in the restoration shown in Figure If. This
-is a pretty fair reconstruction of the original object 1(b). Its good aspects

are (a) complete resolution of the three rods; compare with the resolution
present in 1(c) or L(d); (b) an almost absence of artifacts (one is visible on

the lower left); (c) very strong edge-gradients at the rod boundaries; (d)
true absorptance values within the restored rods (white corresponds to level
b); and (e) faithful reconstruciton of the top rod's shape, most probably
because it has the most energy of the three and hence suffered from noise
propagation the least. The bad aspects are (a) faulty shape in the

reconstructed, lower-right rod; and (b) strongly underestimating the intensity
* in the lower-left rod--it is almost not visible. But, considering that these

results followed from the use of only four projection directions, we
considered them encouraging.

We proceeded to try, in the same way, the case of 20 projections.
Corresponding results are shown in Figure 2(a-e). In Figure 2e is shown the
MBE output for p = 200. This is superior to the corresponding four-

-" projections output in Figure If, as was expected. In particular, resolution
is very high, shapes are more faithfully reconstructed, artifacts are still

* low, and even the weak, lower-left source is (now) strongly restored.

We also compared these results with results by the maximum entropy (ME)
"* algorithm for the same data. Notice that in the objective function (11) if b
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is made very large the second sum is effectively independent of choice o, i.e.
it is a colstant. Therefore, in this case the algorithm simply maximizes
entropy, the first sum and the MBE algorithm becomes the ME algorithm. Hence,
we made b twice the known upper bound (any further increase did not
significantly change the output). The resulting ME restoration is shown in
Figure 2f. This is a softer, lower-resolution estimate than before. The
lower-left object is now barely detected. We conclude that the MBE algorithm
with a good estimate of the upper bound b has a strong advantage over the
maximum entropy (ME) algorithm.

In order to observe the effect of increased p upon the reconstruction, we
now increased p to a value 300, with output in Figure 2g, and to a value 400,
with output in Figure 2h (level b was once more at its true value). There is
some increase in resolution, but it is apparent that this is saturating. The
envisioned application to rod cross sections is to detect defects,
particularly cracks, in the rods. As an example we included a one pixel wide
crack in a rod. So narrow a crack furnishes an acid test for the algorithm.
We again used 20 projections. Results are shown in Figure 3. The cracked rod
is the top one, as shown in 3b. The overall object is otherwise the same as
in Figure 2b. The Poisson image in 3(c) does show a gray, nebulous shape in
the vicinity of the crack. However, this cannot be definitively used as an
indicator for a crack, since image 2(c) also has a gray, nebulous shape there
whereas its object did not have a cr... . idently, some of the gray shape is
due to the particular noise values chosen, which are about the same in both
cases.

We prefiltered the Poisson image into its Gaussian form in Figure 3d, now
using a a of 1.5 (smaller than in Figure 2d). We then restored this by MBE in
3(e), using a p of 200. This again sharply restores the rod cross sections,
but now with a notch in the top rod. This notch exactly corresponds in
position to the crack. Comparison with the corresponding rod reconstruction
in Figure 2e, where the object did not have a crack, shows a decisive
difference. It is apparent that the crack has definitely been reconstructed
in 3(e).

Figure 3f shows the result of now using MBE with p = 400. Higher
resolution is attained, with the crack slightly better restored. This should
be compared with reconstruction Figure 2h, where the crack did not exist in
the object.

A better comparison with results in Figure 2 is obtained if the same a as
in Figure 2 were used in the prefiltering step in both cases. Accordingly, we
filtered image 3(c) into a Gaussian form using, a = 2. The result is Figure
3g. This image was fed into MBE using p = 400, with the result 3(h).
Comparison with the corresponding uncracked restoration Figure 2h shows a
definite restoration of the crack, although not quite as vividly as in 3(e) or
3(f). Evidently, the use of a smaller a helped in this example.

We may summarize these results by stating that MBE can restore one pixel
wide cracks in the rods with high reliability. This result is obtained for
the high-contrast objects tested here, assuming 20 or more projections, and
with S/N the order of 10:1 (or better). Thus, the biasing of the outputs
toward a flat, gray scene did not cause the algorithm to miss crack details
under these conditions. (See Object Model section.) We have not tested the
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algorithm on low-contrast objects or with lower S/N in the image. In the
tested case, the crack was only partially restored, producing a distorted
image of the rod. in practical applications it might not be recognized as a

* crack, since also the smaller undamaged rods were distorted. However, one can
expect a good restoration of cracks wider than one pixel.

V. CONCLUSIONS

The knowledge of a least signal upper bound is very effective in
enhancing the resolution of image reconstructions. The proviso is that this
bound be met over a substantial part of the object field. The number of
projections that are needed for high quality outputs by the suggested method
can be quite small, ranging from 4 to 20, depending on accuracy
requirements. In a sample problem rod cross sections could be accurately
reconstructed with very high edge gradients, and one-pixel-wide cracks can be
restored.

The time requirements for the 64 x 64 pixel cases shown were about 8 s of
CPU time on a Cyber 135 mainframe computer. The time requirement is
proportional to the area of the image to be processed expressed in pixels.
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APPENDIX A: USE OF BOSE-EINSTEIN STATISTICS

A more fundamental derivation of the a priori object law (3) follows by

separately considering photon absorptions and transmissions through the
object .*

Let En known photons be incident upon pixel n. This quantity is
ordinarily known in computer tomography, since the incident energy upon the
object is accurately monitored, and pixels toward the emergent side of the

object are not strongly blocked by pixels on the incident side (most of the

light passes unabsorbed through the object).

Next, consider the identity

En = m + (b/o - m) + (En - b/Ao). (Al)

This describes the fate of the E photons as independently m absorptions, (b/o

- m) transmissions and (En - b/o transmissions. Let these three states have
z, z', and z" degrees of freedom, respectively. Then the probability law for

the En photons is

P(En) = Pz(m)Pz'(b/Ao - m)Pz"(En - b/Ao), (A2)

where Pz(k) is proportional to the Bose-Einstein statistics,
19

Pz(k) = ((k + z - l)!)/(k!(z - )!) pk (A3)

By inspection, in the classical particle limit z large, this law goes over
into a statistic

Pz(k) = pk/k! . (A4)

The probability law Pz in (A2) is merely a multiplicative constant
independent of m and here may be ignored. Hence, in the classical particle

limit z, z' large appropriate for x rays, Equation (A2) becomes proportional

to a binomial statistic,

P(En) a pnm/m! [qnb/o-m/(b/Ao - m)]! . (A5)

As the pixels n act independently, the net probability P(E1 ,...,Em) for all

photons goes over into a product of factors (A). This is of the form

Equation 3, as was to be proved.

*We thank B.H. Soffer of Hughes Research Laboratories for the basic idea

behind this proof.
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